如果你參加過公考數(shù)量培訓,授課老師會告訴你,排列組合的題很難,考試的時候如果時間不夠用,直接放棄這類型的題目。那么排列組合到底難不難呢,可不可以簡單的解釋一些有關(guān)排列組合的一些原理和做法呢,答案是肯定的。那么就來看看怎么樣從一個排列組合菜鳥迅速的成為排列組合小達人。
(一)加法原理和乘法原理。
考生往往會問為什么有時候用加法,有時候用乘法。
一步到位的是加法原理,什么是一步到位?從家去單位就是一步到位,具體的去的方法方式之間用加法。不能夠一步到位的,需要分步進行的就是乘法原理了,比如從家到單位再去個小吃鋪買個早餐,這就不能一步進行了,需要先到單位再到小吃鋪,那么這整個過程就分成了兩步,一步是到單位,之間的運算是加法原理,單位到小吃鋪也是一步的也用加法原理,但是兩部之間一定要用乘法。這就是乘法原理。
(二)排列和組合。
什么是組合呢?要是兩個人,你給他們每人一個華圖的筆記本,那就是一種方法,每人一本。這種沒有差別的,沒有順序的做法就是組合,我們通常記作C。但是如果現(xiàn)在給其中一個同學一個華圖的筆記本,給另一個同學一個筆記本電腦,這回差別就是很大了,要是給我,我都想要筆記本電腦。所以這時候就有一個差別了,可以說是一個有順序的行為,有兩種不同的給法,這個就是排列,我們記作A。我們常常看到A252 或是C82這樣的數(shù),那是怎么來的呢?
非常容易寫出來,首先判斷是排列還是組合,判斷的方法就是有沒有順序,寫出A或C。其次,判斷從多少總數(shù)中選出來的,比如從25個人中挑兩個,那么25寫到下角標上,選出來的數(shù)就寫到上角標。就是這么的簡單。
(三)排列和組合的計算方法。
當你看到一個題目,并且已經(jīng)把式子列了出來,剩下的問題就是求解了。授課老師給你列出來的式子很長很復(fù)雜都出現(xiàn)了“!”這樣的符號,了解的知道它是階乘,不知道的還以為是驚嘆號呢。所以說,那個復(fù)雜的式子就不要看了。怎么算呢?
先看排列比如A53寫上“=”等于什么呢?第一個數(shù)字寫上5(也就是下角標的數(shù)字)每個數(shù)字之間用乘法,乘以的下個數(shù)比上個數(shù)少1(對于這個式子就是乘以4),以此類推,那么要乘以多少個數(shù)呢,乘以上角標個數(shù)字就可以了。
組合要稍微麻煩一點。比如C73首先組合“=”后面先寫個分數(shù)線,分子是相應(yīng)的排列也就是A73,分母是從上角標的數(shù)開始寫(對于這個數(shù)就是3)一直乘到1。
這就是排列組合的解題思路和方法,只要會了以上的三步,你將對排列組合有了一個全面全新的了解。
相關(guān)推薦: